
 

 

  
Abstract—The Magnus effect, which occurs with the oncoming 

flow around the rotating bodies, is known for a long time. The main 
purpose of the present paper was to identify the conditions of 
Magnus effect occurrence in a thin lubricant film of the fluid-film 
bearing and to obtain an approximate analytical dependency for its 
quantity evaluation. The mathematical model of the viscous 
incompressible fluid flow is based on the Navier-Stokes equation and 
the condition of incompressibility considering the non-stationarity of 
the process, inertia, viscous resistance and mass forces effect. As a 
result of evaluation of significance of the mathematical model 
equations terms by means of similarity theory and dimension analysis 
the conditions were determined as a dimensionless criteria, when 
inertia forces from the Magnus effect are significantly bigger than the 
mass and viscosity forces. Given the fulfillment of these conditions 
an analytical form was obtained to determine the hydrodynamic 
reaction of the lubricant. 
 

Keywords—Continuum mechanics, hydrodynamic lubrication 
theory, Magnus effect, fluid-film bearing, similarity criterion.  

I. INTRODUCTION  
he Magnus effect [1] occurs with the combination of the 
rotational flow and the oncoming flow of the media 

around the body, which results in the drop of the pressure and 
in the resulting force perpendicular to the direction of the 
oncoming flow.  

According to the Joukovsky theory on the lifting force [2] 
the Magnus effect in the quantitative terms is as follows: 
 

∞×Γρ−= VF





, (1) 

where ρ  - density of the media, Γ


 - circulation of the 
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rotational velocity of the cylinder, ∞V


 - velocity of the 
oncoming flow. 
 

The module of the reaction (1) in the case of the flow over 
the cylinder of the unit length can be written in a more simple 
form suggested by Rayleigh [3]: 

∞ρπω= VrF 22 , (2) 
where ω  - the angular rotational velocity of the cylinder, r  - 
radius of the cylinder. 
 

The Magnus effect in connected with the viscosity properties 
of the media, namely the stratified flow and adhesion 
properties, and quantitatively it is due to the inertia forces of 
the media motion, which is evidenced by the presence of the 
ρ in (1). 

The object of the study is a circular flow of the viscous 
incompressible media in the fluid-film bearings. The 
importance of the correct calculation is hard to overestimate. It 
is only necessary to highlight that they are the key elements of 
the rotor systems in the fluid rocket engines. 

The vibration of the rotating tip in the fluid-film bearing 
cause the media motion in the same way as it happens when 
the oncoming flow flows over the rotating cylinder. So there is 
a theoretical possibility of a significance of the influence of the 
Magnus effect on the hydrodynamic reaction of the lubricant. 

It is possible to show that the Reynolds equation [4] which is 
most frequently used in hydrodynamic theory, does not 
consider the influence of the Magnus effect. So it is an urgent 
problem to indicate the conditions of occuring and to evaluate 
the significance of the Magnus effect in the fluid-film bearings, 
as it is the objection of this paper.  

II.  CONCEPTUAL MODEL  
A problem under study considers a media flow in the gap 

between the tip of the rotor with the radius r which rotates and 
vibrates, and the bearing with the radius R of the rotor machine 
(fig. 1).  

Some of the assumptions in the conceptual model are made 
subjectively, due to the fact of solving some particular class of 
problems of the hydrodynamics [5]. Among them are the 
following: 
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1. The rotor rotates with a constant angular velocity ω  and 
vibrates in the plain which is perpendicular to its axis. 

2. The continuous media is incompressible and has constant 
mechanical and thermophysical properties. 

3. On the surfaces of the tip and the bearing the no-slip 
condition is met.  

Another part of the assumptions was made on the basis of the 
results of the experimental study on the bearing dynamics of 
the high-speed lightly loaded rotor systems [6].  

4. The media motion occurs in the plain perpendicular to the 
bearing axis, the lubricant consumes the whole area between 
the tip and the bearing.   

5. The axis of the tip vibrates close to the center of the 
bearing. 

6. The transverse vibrations frequency in equal to the 
rotational frequency, and the trajectory of the vibration is close 
to a circle form. 

A third part of the assumptions will be formed based on the 
similarity theory and the dimensional analysis applied to the 
equations of the mathematical model of the media flow.   

 

 
Fig. 1 Conformity model of the fluid-film bearing 

 

III. THE MATHEMATICAL MODEL 
According to the assumptions of the conceptual model, and 

taking for the sake of simplicity that the trajectory of the 
vibrations of the tips is a circle of a known radius 0kh  
( 10 <≤ k ) with a center on a horizontal symmetry axis of the 
bearing and goes at initial point of time 0=t through the 
center of the bearing (fig. 1), so the problem of the continuous 
media motion at this point of time is significantly simplified 
due to the symmetry of the flow area and the convenience of 
setting the boundary conditions. To obtain the approximate 
analytical dependencies for the lifting force calculation, the 
analysis of the significance of the mathematical model 
equation terms will be implemented on the surface of the tip at 
an initial point of time. 

The continuous media motion is more convenient to study in 
polar coordinates [7]. Lamé parameters iH  in polar 
coordinates iβ  , where 1β - a radial coordinate, 2β - a 
tangential coordinate, will take the following form: 

 

.
,1

12

1
β=

=
H
H

 (3) 

 
The Navier-Stokes equation in the projection on the iβ  axis 

considering (3) take the following form [5, 8, 9]: 
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 (4) 

where iv  - components of the velocity vector of the media 
flow in the polar coordinates iβ , t  - time, if  - specific mass 
force, 0p  - pressure, µ  - dynamic viscosity coefficient 
(viscosity). 
 
The left hand part of the equations (4) characterize the inertia 
forces, the first term of the right hand part characterizes the 
mass forces (gravity, electromagnetic interaction forces), the 
second term of the right hand part is a hydrostatic force, the 
third term is a viscosity forces (dissipative term).  

The incompressibility condition takes the form [5, 8, 9]: 
 

.vvv 01

1

1

2

2

11

1 =
β

+
β∂

∂
β

+
β∂

∂  (5) 

 
The equations of the vibration of the center of the tip in 

the iX  coordinates with the given assumptions take the 
following form1: 
 

,sin

,cos

02

001

tkhX

khtkhX
C

C

ω−=

+ω−=
 (6) 

where k  - amplitude of the vibration coefficient ( 10 <≤ k ), 
0h  - average gap ( rRh −=0 ), ω  - rotational velocity of the 

vibrations (coincides the angular velocity of the rotor). 
 
Obviously, the components of the velocity of the tip center in 
the iX  coordinates take the form: 
 

 
1 The values in the Cartesian coordinates are denoted with the capital 

letters (X, V, F, etc.) 
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 (7) 

 
Then, at the point of time 0=t  the cinematic boundary 
conditions take the form: 
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It can be shown that on the surface of the tip r=β1  at a 

moment of time 0=t  the incompressibility condition (5) with 
the cinematic boundary conditions (8) take the form: 
 

0
1

1 =
β∂

∂v . (9) 

 
Additionally, with the (7) and (8) on the surface of the tip 

r=β1  at a moment of  time 0=t  the form of the functions 

2β∂∂ iv and tvi ∂∂  can be simply determined: 
 

.sinkh
t

v

,coskh
t
v

,sinkhv

,coskhv

2
2

0
2

2
2

0
1

20
2
2

20
2
1

βω−=
∂

∂

βω=
∂
∂

βω=
β∂

∂

βω−=
β∂

∂

 (10) 

 
Same with (7), (8) on the surface of the tip r=β1  at a moment 
of time 0=t the partial derivatives of higher orders can be 
determined with respect to a tangential coordinate 2β  and 
time t . 

Then a similarity theory and a dimensional analysis are 
applied to evaluate the significance of the terms in the Navier-
Stokes equation (4) and the incompressibility condition (5) in 
order to simplify the mathematical model (table I). Due to the 
fact that to determine the lifting force it is necessary to solve 
the Navier-Stokes equation on the surface of the tip r=β1  at 
a moment of time 0=t , the nondimensionalization of the 
equations of the mathematical model was implemented with 
the a priori knowledge of the range of the equation terms 
change on the surface of the tip (8)-(10). 
 

I The components of the Navier-Stokes equations (4) and the 
continuity equation (5) 

Dimensional form 
Dimensionless form 
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The Navier-Stokes equations (4), written in a dimensionless 

form (table I) take the form: 
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 (11) 

where k  - dimensionless coefficient of the vibrations 

amplitude ( 1≤k ), ( ) ( )20
2 2* ω+ω= khrv  - characteristic 

velocity, 0hr=γ  - geometry parameter, ( )0
2* ghvFr =  - 

Froude number, ( )ρ= 20
0 *vpEu  - Euler number, 0

0p  - the 

characteristic pressure, µρ= 0*Re hv  - Reynolds number. 
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It is easy to demonstrate that the described method of 
nondimensionalization applied to the incompressibility 
condition (5) proves its terms orders are equal. In many cases 
the substitution of the specific values of the dimensionless 
criteria in the dimensionless equations of the mathematical 
model allows to eliminate the non-significant terms of the 
model and simplify the model [10, 11]. Below these examples 
will be shown. 

The unknown hydrodynamic reaction of the moving media 
F


 on the surface of the tip r=β1  at a moment of time 0=t  
is determined by means of integrating the pressure distribution 

0p , which was found by solving the simplified Navier-Stokes 
equations (4) with accuracy up to the additive constant 
together with the incompressibility condition (9) and taking the 
cinematic boundary conditions (8) into account: 
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IV. HYDRODYNAMIC FORCES IN THE FLUID-FILM BEARINGS 
On the basis of the developed mathematical model with the 

initial and boundary conditions it is necessary to determine, 
under which circumstances the influence of the Magnus effect 
on the resulting hydrodynamic force is significant. For this, the 
problem of determination of the horizontal component 1F  of 

the hydrodynamic reaction F


, which acts on the rotating 
cylinder of a unit length, is considered. The reaction is 
determined in the Cartesian coordinates iX  (fig. 2) by the 
solution (12), nonzero value of this reaction evidences the 
presence of the Magnus effect (Fig. 2). 

 

 
Fig. 2 Vector field of the media flow in a bearing with a 

rotating tip, the center of which vibrates 
 

In the Fig. 2 a scheme of a joint action of the viscosity and 
inertia forces is shown in a resulting hydrodynamic force, and 
the flow velocity distribution in a bearing with a rotating and 
vibrating tip. The velocity distribution calculation is 
implemented using special software [12]. The flow in Fig. 2 is 
stretched along the radial coordinate to make it more 
demonstrative. 

Let us consider a particular case, where the mathematical 
model parameters have the values of such orders which are 
close to the conditions of the high-speed rotor systems fluid-
film bearings operation. For such systems 210~γ  or less, so 
in the characteristic velocity equation 

( ) ( )20
2 2* ω+ω= khrv  the peripheral speed is no less than 

210  times more than the vibration velocity, since 0hr γ=  and 
1<k . Then the characteristic velocity is approximately equal 

to the peripheral velocity on the surface of the tip ( )rv ω≈* . 
The order of the terms in (11) for the case in question is shown 
in the table II.  

There is a rule, in accordance to which the terms of inertia 
and dissipation can be neglected as their order differs by three 
or more orders from the order of the older terms. In this case 
one exception is made and in the second Navier-Stokes 
equation the inertia terms, which differ by two orders from the 
older term, are omitted. 

 
II The Navier-Stokes equations (11) terms orders of magnitude 
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The simplified Navier-Stokes equations after a number of 
simplest transformations can be written in a following form: 
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To compare and evaluate the significance of the terms between 
two equations (13) it is necessary to equate the left-hand parts, 
which can be achieved by differentiating the first equation (13) 
with respect to the 2β coordinate, and the second equation – to 
the 1β  coordinate. After differentiation and 
nondimensionalization (13) take the form: 
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It can be seen that the order of the inertia and the dissipative 
terms of the right-hand part of the first equation (14) is smaller 
by four or more than the orders of the according terms of the 
second equation (14). If the mass forces effect is insignificant: 

( )kRe,kmaxFr γγ>> 2 , the Navier-Stokes equations can be 
additionally simplified, and the equations of the mathematical 
model with the incompressibility condition (5) take the 
following form: 
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It has to be noted, that even with the simplifications the 
problem (15) is hard to solve analytically, so below only 
specific cases will be discussed. 

First specific case: the inertia terms can be neglected 
kRe γ<<  (with 0≠k ), or 0=k . Then the solution of (15) 

considering the cinematic border conditions (8) and the 
condition of 2β  periodicity of the functions, the pressure 
distribution on the surface of the tip r=β1  can be calculated 

with accuracy up to the constant 0
0p : 
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geometry parameter, ω= 0khV C  - amplitude of the tip 
vibration velocity(7). 
 
Then the components of the hydrodynamic reaction will make: 
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1 0
 (17) 

 
The obtained solution (17) agrees well with the solution of the 
Reynolds equation for the two-dimensional flow case [13, 14]. 

Second specific case: the viscosity terms can be neglected 
kRe γ>> ( 0≠k ). Then, the solution (15) after the second 

equation is differentiated with respect to 1β  and the minimal 
of two terms of the expanded differential of the multiplication 
result is omitted, the pressure distribution on the surface of the 
tip r=β1  can be calculated with accuracy up to the constant 

0
0p : 

2
0
00 βγρω−= cosrVpp C . (18) 

Then the components of the hydrodynamic reaction will make: 

.F
,VrF C

02

2
1

=
πγρω−=  (19) 

The obtained equation with precision up to γ/2 matches the 
initial calculation equation (2) obtained when solving the 
problem of the flow over the rotating cylinder by the oncoming 
flow. When the vibrations are not present 0=k , the 
mathematical model equations are reduced to the form for the 
case of the fluid flow between the rotating coaxial cylinders. 

In the Fig. 3-5 the results of the calculation of the resulting 
hydrodynamic force based on the models (17), (19) are 
presented for the bearing with a 50 mm diameter and an 
average gap 500 µm with kerosene, water, and liquid oxygen 
as lubricants. The rotation frequency as the main discrete 
variable was taken in interval 50 1010 << n  rpm with fixed-
increment. The coefficient of the vibrations amplitude 3.0=k  
was taken as medium high [6]. For the convenience reasons, 
the results are presented in logarithmic coordinates, and it can 
be seen when the inertia and viscosity forces can be neglected 
and where they should be considered jointly.  

 
Fig. 3 The resulting hydrodynamic force (17), (19) in the fluid 
film bearing with kerosene lubrication and the zones of terms 
domination: I – viscosity term domination, II – both viscosity 

and inertia terms, III – inertia term domination 
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Fig. 4 The resulting hydrodynamic force (17), (19) in the fluid 

film bearing with water lubrication and the zones of terms 
domination: I – viscosity term domination, II – both viscosity 

and inertia terms, III – inertia term domination 
 

 
Fig. 5 The resulting hydrodynamic force (17), (19) in the fluid 
film bearing with liquid oxygen lubrication and the zones of 
terms domination: I – viscosity term domination, II – both 
viscosity and inertia terms, III – inertia term domination 

 

V. CONCLUSION 
In the fundamental papers on the hydrodynamic lubrication 

theory [2, 3] the problems of stationary or quasi-stationary 
media flow are considered. And presently the majority of the 
articles in the field of the hydrodynamic lubrication theory and 
the rotor system dynamics are based on the Reynolds equation 
solution [15-17]. The reason for the present research is the fact 
that the media flow in the fluid-film bearing with a vibrating 
tip is close to the oncoming flow over the cylinder, so the 
Magnus effect from the inertial forces, not considered in the 
Reynold equation, can be significant.  

During the research the analysis of the dimensionless 
equations of the mathematical model of the non-stationary 
isothermal flow of the viscous incompressible media in the 

fluid-film bearing considering the mass forces, inertial forces 
and dissipation was made. The conditions were determined, 
when the Magnus effect from the inertia forces influences most 
significantly on the hydrodynamic reaction of the lubricant 
film, namely the requirement kRe γ>>  has to be fulfilled. 
So, the Magnus effect can have a significant influence on the 
bearings and contactless seals dynamics of the high-speed 
rotor machines lubricated with the low-viscous media, e.g. 
liquefied gases [18, 19]. For such conditions, based on the 
approximate equations of the mathematical model, an 
analytical equation was obtained for the further calculation of 
the hydrodynamic force (19). The obtained formula matches 
the known Rayleigh formula up to a constant.  
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